Dougherty Valley HS Chemistry - AP Acid Base – Henderson Hasselbalch

Name:

Period:

Seat#:

Directions: Show all work. Box your final answer. *Remember – lots of ways to do these. If you get the right answer and someone can follow your work and units etc. then you are FINE!

		$pK_a = -\log(K_a)$	$K_a =$	$= \frac{[H^+][A^-]}{[HA]}$	$[H^+] = \frac{1}{2}$	$\frac{K_a[A^-]}{[HA]}$	
		$pH = pK_a + log\left(\frac{[salt form]}{[acid form]}\right)$	$\left(\frac{1}{2}\right)$	<i>pOH</i> =	$pK_b + log\left(\frac{[salt for}{[base for}\right)$	$\left(\frac{rm]}{rm}\right)$	
1)	A buff and 1 <i>Ka</i> = 1.	fer is prepared containing 1.00 molar aceti .00 molar sodium acetate. What is its pH? <i>76 x 10⁻⁵</i>	c acid <u>4.752</u>	2) A buffer i and 0.80 <i>Ka</i> = 1.76 x	s prepared containing 1.0 0 molar sodium acetate. V 10 ⁵	0 molar acet Vhat is its pH	tic acid 1? <u>4.655</u>
3)	A buff and 0 <i>Ka</i> = 3.	fer is prepared containing 0.600 M anisic a .800 M sodium anisate. What is its pH? <u>4.</u> .38 x 10 ⁻⁵	acid 4	4) A buffer i 1.00 M a <i>Kb</i> = 1.8 <i>x</i>	s prepared containing 1.0 mmonium chloride. What 10 ⁵	0 M ammoni is its pH? <u>9.2</u>	ia and <u>48</u>
5)	A buff 0.800 <i>Kb</i> = 1.	fer is prepared containing 1.00 M ammonia M ammonium chloride. What is its pH? <u>9.</u> 8 x 10 ⁻⁵	a and 6 <u>345</u>	6) A buffer i 0.800 M Nicotine is	s prepared containing 0.6 nicotine hydrochloride. Wl a base. pKa = 8	00 M nicotin nat is its pH?	e and ? <u>7.896</u>

/)	pKa for phenoiphthalein is 9.3 at room temperature. a. Calculate ratio of its anionic form to acid form at pH again at pH 10. <u>At pH 8.2 = ratio of base form to acid form = .</u> <u>At pH 10 = ratio of base form to acid form = 5.01 to 1</u>	8.2 a <u>0.079</u> 4	nd then <u>4 to 1</u>	 b. Using these values, explain the color change within this pH range from 8.2 – 10
8)*	Calculate the pH of the solution that results from the addition of 0.040 moles of HNO ₃ to a buffer made by combining 0.500 L of 0.380 M HC ₃ H ₅ O ₂ (K _a = 1.30×10^{-5}) and 0.500 L of 0.380 M NaC ₃ H ₅ O ₂ <u>pH = 4.700</u> *Assume addition of the nitric acid has no effect on volume.	9)	What is the pH CH ₃ COOH has NaOH? (Ka = 1 (*hint* Think abou react. Then think can uses with the	I when 25.0 mL of 0.200 M of s been titrated with 35.0 mL of 0.100 M $.8 \times 10^{-5}$) <u>pH = 5.11</u> it how much A ⁻ is formed when mol HA + mol OH about if you have [HA] and [A ⁻] left over that you He-Ha equation!)
10	A beaker with 100.0 mL of an acetic acid buffer with a pH of 5.000 is sitting on a benchtop. The molarity of acid is 0.100 M and the molarity of the conjugate base in this buffer is 0.100 M. A student adds 7.300 ml of a 0.3600 M HCl solution to the beaker. How much will the pH change? The pKa of acetic acid is 4.752. $pH = 4.518$			
		11)	Calculate the r create a buffer The pKb of CF	ratio of CH ₃ NH ₂ to CH ₃ NH ₃ CI required to with pH = 10.14 H_3 NH ₂ = 3.357 <u>base/acid ratio = 0.314</u>
1				